

REDUCED GRAPHENE OXIDE FOILS FOR ION STRIPPER APPLICATIONS L. TORRISI¹, L. SILIPIGNI¹, V. HAVRANEK², M. CUTRONEO², A. TORRISI² and G. SALVATO³

¹Dip.to Sci. Matematiche e Inform., Scienze Fisiche e Sci. della Terra (MIFT), Università di Messina, V.le F.S.

d'Alcontres, 31, 98166 Messina, Italy ²Nuclear Physics Institute of ASCR, Hlavni 130, 250 68 Husinec Řež, Czech Republic 3 CNR-IPCF, Messina, Italy

CHERNE 2019 -15th Workshop on European Collaboration in Higher Education on Radiological and Nuclear Engineering and Radiation Protection, 2-5 June 2019, Portopalo di Capo Passero

Outline

- Introduction (Graphene based materials)
- 4 Material preparation and characterization
- Objectives : rGO as lon Strippers
- Preliminar measurements with rGO stripper
 Future developments: Increase and optimize the measurements with rGO strippers in accelerators.

Introduction: Graphene-based materials (C allotropic state)

Carbon atom

Covalent bond

GO preparation as self-supported thin films

(Spin coating preparation film)

Concentrated GO solution

f)

 $\Phi = 4 \text{ cm}$

Thickness: $\sim 2 \,\mu g/cm^2 \,(10 \,nm)$ ~ 20 µg/cm² (100 nm)

- ~ 200 μg/cm² (1 μm)
- ~ 2 mg/cm² (10 μ m)

Property	Graphite	Graphene	GO	rGO
In-plane thermal conductivity	1950-2000	1500-5300	2.9	650
at RT (W/m·K)				
Thermal conductivity along c	0.7-20		0.5	1 (RT)
axis at RT (W/m·K)				10 (300°C)
Electrical conductivity (S/cm)	$2 \times 10^5 \parallel \text{basal plane}$	2000	1.2×10 ⁻⁵	1350
	$3x10^{2}$ basal plane	10 7 10 1		1.000
Density (g/cm ³)	2.09-2.25	0.005	1.5	1.6-1.91
Young's Modulus(GPa)	11.5	1000	207.6	260
Vickers Hardness (kg/mm ²)	7-11		1	160
Tensile Strength (MPa)	10	130		90
Melting point (°C)	3730	4237	3600	>3800
Specific Surface area (m ² g ⁻¹)		2630	736	422-500
Carrier mobility (cm ² V ⁻¹ s ⁻¹)	>104	$10^3 - 2x10^5$	153	0.05-372
Sheet (for graphene)		400		14000
Resistance (W/sq) at RT		(<3nm)	10 ¹²	
Optical transmittance (%)	97.7	94.0	96	85
Refractive index n	2.52-2.67	2.0-3.0	1.957	1.84-2
	at 550nm	at 550nm	at 634 nm	at 634 nm

Graphene Oxide

Functional groups:

- hydroxyl (C-OH)
- epoxy (C-O-C)
- carbonyl (C=O)
- carboxyl (O-C=O)
- Presence of H₂ and H₂O.

The GO reduction can be obtained by:

Thermal processes (as a function of the temperature in air, nitrogen and vacuum)

2) Ion beam processes

(in vacuum as a function of the dose: 10^{13} - 10^{16} /cm²)

3) Laser beam processes

(as a function of fluence 1-100 J/cm², wavelength, pulse duration. In air, nitrogen, in vacuum,...)

4) Chemical processes (Hydrazine reduction)

Evolution of GO structure with reduction

The dark grey areas represent sp² carbon clusters and the light brown areas represent sp³ carbon bonded to oxygen groups (represented by small dots).

Electrically conductive

RBS Analysis

L. Silipigni et al., Vacuum 165, 254 (2019)

EDX Analysis

C)

250

glancing angle 30°

200

rGO

C/O=3.3

1.5

virgin GO

2.0

2.0

1.0

1.5

Wavelength (nm)

XPS Spectroscopy

Sample	C 1s (at%)	O 1s (at%)	C/O ratio
Pristine GO foil	71.8	28.2	2.55
2.5 MeV H ⁺ 1.0×10^{10} cm ⁻² 2.5 MeV H ⁺ 1.0×10^{14} cm ⁻²	68.9 70.3	31.1 29.7	2.15 2.37
2.5 MeV H ⁺ 1.0×10^{15} cm ⁻²	75.2	24.8	3.03
5.1 MeV He ²⁺ 1.0×10^{15} cm ⁻² 5.1 MeV He ²⁺ 1.0×10^{14} cm ⁻²	70.7 71.0	29.3 29.0	$\begin{array}{c} 2.41 \\ 2.45 \end{array}$
5.1 MeV He^{2+} 1.0 × 10 ¹⁵ cm ⁻²	78.5	21.5	3.65

C/O α lon dose and stopping power

L. Torrisi et Al., *Vacuum* 153 (2018) 122-131.
P. Malinski et Al., *NIM B* In press 2019.
M. Cutroneo et Al., *Vacuum* 165 (2019), 134-138.

Raman Spectroscopy

2 MeV He⁺ ion beam irradiation

D/G α lon dose

- Reduction of sp² domain sizes;
- Increment of the number of sp² domains.
- Increment of disorder;

L. Torrisi et Al., *Vacuum* 160 (2019), 1-11.

Electrical Characterizations

Microscopy investigations

AFM analysis

TEM analysis, rGO

SEM analysis

GO

rGO

GO

Cross sections

1µm

b RGO

100nn

Applications:

- Hydrogen and Deuterium storage material
- Thermal sensor
- Gas sensor
- Biomaterials
- Optical absorber

- Filter membrane
- Ion Stripper

Charge state distributions vs. foil thickness

Gas sensor

The Stripper Foil

 A thin carbon foil is placed in the beam tube at the center of the terminal. As the negatively charged beam strikes the foil (at fairly high energy), electrons are stripped from the ions, leaving them positively charged.

Negatively Charged Beam Enters the Stripper Foil

 $(10-100 \ \mu g/cm^2 \approx 0.05-0.5 \ \mu m)$

Involved processes inside the stripper foil:

 $A+B \rightarrow A+B^*$ Excitation

 $e^{-} + A \rightarrow e^{-} + A + e^{-}$ lonization

 $e^- + A^{i+} \rightarrow A^{(i+1)+} + 2e^-$ Multiple ionization

 $e^- + A^{i+} \rightarrow A^{(i+k)+} + (k+1)e^-$ Multiple ionization

 $A^{i+} + B^{k+} \rightarrow A^{j+} + B^{n+} + (j+n-i-k)e^{-}$ Charge Exchange

 $A^+ + e^- \rightarrow A^\circ$ Recombination

 $A^{2+} + e^- \rightarrow A+$ Recombination

 σ cross-section (E, z, Z)

extraction foil

- thin foil, for example carbon, removes the electron(s) with high probability
- new charge state of ion brings it on a new trajectory → separation from circulating beam
- lifetime of foil is critical due to heating, rad.damage; conversion efficiencies, e.g. generation of neutrals, must be considered carefully

i-e Recombination

Nuclear Physics Institute, Rez Academy of Science of Czech Republic, CANAM-TANDETRON Laboratory

Investigated ions:

He, C, O ion beams 1 - 24 MeV energy

1 - 100 nA currents

Spot size 1-25 mm²

Transmitted current measurements:

 $T = I_t / I_0$

He ⁺ beam											
	Grap	hite ($\rho = 2.2$	5 g/cm ³	[']), 0.5 μι	n	RGO ($\rho = 1.50 \text{ g/cm}^3$), 0.5 µm, 1.0 µm, 2.0 µm					μm
Energy	Range in	Lateral	I ₀	IT	Т	Range in	Lateral	Δx	I ₀	I _T	Т
(MeV)	Graphite	Straggling	(nA)	(nA)	I_T/I_0	RGO	Straggling	(µm)	(nA)	(nA)	I_T/I_0
	(µm)	nm/0.5µm				(µm)	nm/0.5µm				
1.0	2.70	25	3.5	6.9	1.97	4.05	25	1.0	3.5	6.95	1.98
2.0	5.48	16	3.5	6.9	1.97	8.22	16	1.0	3.5	6.9	1.97
2.9	8.63	13	5.0	9.8	1.96	12.95	13	0.5	5.1	10	1.97
2.9	"	"	5.1	10	1.96	"	"	1.0	5.1	10	1.96
2.9	"	"	5.3	10	1.89	"	"	2.0	5.3	10.1	1.91
3.8	12.41	11	7.4	14.4	1.95	18.62	11	1.0	7.4	14.3	1.93
100 - He ⁺	He+ ion beam, 3.8 MeV & 0.5 um C He^{+} He^{2+} He^{2+}										

He⁺

100%

He⁺, He²⁺

198%

rGO Stripper foil

Equilibrium between ionization and recombination effects

MeV energy (1-18 MeV)

C⁺

Sub-micrometric foil thicknesses (10-100 μ g/cm² \approx 0.05-0.5 μ m)

C⁺,C²⁺,C³⁺,C⁴⁺,C⁵⁺,C⁶⁺

C ⁵⁺ beam												
1.20	Grapł	nite ($\rho = 2.25$	5 g/cm ³), 0.44 μ	m	rGO	$(\rho = 1.50 \text{ g/c})$	$2m^{3}$), 0.	5 µm, 1	.0 µm	224	
Energy	Range in	Lateral	I ₀	IT	Т	Range in	Lateral	Δx	I ₀	IT	Т	
(MeV)	Graphite	Straggling	(nA)	(nA)	I_T/I_0	RGO	Straggling	(µm)	(nA)	(nA)	I_T/I_0	
	(µm)	(nm)				(µm)	(nm)					
16	11.55	9	2.15	2.18	1.01	17.33	9	0.5	2.09	2.10	1.0	
16	"	"				"	"	1.0	2.08	2.10	1.01	
	C ⁴⁺ beam											
13.3	9.40	7	6.05	7.3	1.21	14.10	10	0.5	6.2	7.53	1.21	
13.3	"	"				"	"	1.0	6.2	7.56	1.22	
C ³⁺ beam												
10	6.98	8.5	7.0	11	1.57	10.48	12	0.5	7.1	11.2	1.58	
10	"	"				"	"	1.0	7.2	11.4	1.58	
	Starly St				C ²⁺ b	eam			1.9			
8	5.63	10	7.38	15.62	2.11	8.44	14	0.5	7.7	16.7	2.16	
8	"	"				"	"	1.0	7.4	15.4	2.08	
	C ⁺ beam											
3.2	2.65	19.5	10.4	34.18	3.27	3.98	29	0.5	10.2	32.1	3.15	
			5						123			
3.2	"	"				"	"	1.0	9.39	28.2	3.0	
L. Torrisi et Al., submitted to <i>Rad. Physic</i> (C-ion velocity comparable to that of He												

and Chemistry, 2019

ions E_C≈3E_{He})

Preparation

Rupture Film $(\sim 5 \times 10^{16})$ He/cm²) Ο Κα1 100 µm lon pattern a) Virgin GO Written line Modified zone 200 µm 200 µm Fluence of 5.6 · 10¹⁴ a/cm²

Ion beam line

Graphite stripper

rGO stripper

on irradiated (rGO)

c)

zoom

20 µm

lon beam rGO

M. Cutroneo et Al., *EPJ Web of Conferences* 167, 02004 (2018)

V. Romano et Al., *EPJ Web of Conferences* 167, 04011 (2018)

L. Silipigni et Al. *EPJ Web of Conferences* 167, 05011 (2018)

L. Torrisi et Al., *Rad. Eff. and Def. in solids*, 173:1-2, 73-84 (2018)

M. Cutroneo et Al., Vacuum 165 (2019) 134–138.

M. Cutroneo et Al., Nucl. Instr. and Methods B, in press 2019.

Ion beam reduction with groove production (thinning, increasing density and approaching the sp² plains

Main Results

1. Obtained results demonstrated that the stripping effect is similar for Graphite and rGO foils with the same thickness (μ g/cm2).

2. Lifetime for rGO is higher than graphite thanks to the better mechanical and thermal properties of rGO

For a good quality of carbon foil is necessary to extract ion beams stable for a long time, thus the lifetime is an important parameter of such films.

Preliminar Observations

- GO foil (0.4 mm) under helium ion bombardment at 100 nA exceeded ~ 5x10¹⁷ He/cm² dose without disruption.
- Graphite foil (0.4 mm) at 100 nA was broken at ~ 5×10^{16} He/cm².
- No micro cracks are observed in GO and rGO with respect to Graphite.
- Graphite foils show micro cracks by thermal gradient effects and mechanical stresses, not observed in rGO foils.
- Important aspects concern the thermal dissipation of the stripper and of its holder.
- The multiple scattering from the foil increases the beam emittance and thus decreases transmission. The foil thickens under bombardment with heavy beams, resulting in a time-varying reduction in beam intensity and an increase in beam loading. The foil lifetimes decrease as the beam mass and intensity increase.

Literature data

10¹ Cross Section (x10⁻¹⁷ cm²) \overrightarrow{o}_{1} ¹⁸ + N_o -> Xe⁺ (e+18 + N₂ -> Xe+4 10-4 10 Energy (MeV) 20 30 40 50 80 70 Arizona Foil (04/9/29) Lifetime vs Foil thickness 22 60 .14 50 12 40 30 12 20 10

Lifetime (mC/cm²) 0 100 200 300 400 500 600 0 Fol thickness (µg/cm)

Lifetime versus foil thickness

Ionization and recombination cross-sections vs charge

GH Miley et Al., DOI: 10.1109/FUSION.2 005.252869 · Source: IEEE Xplore, 2005

Lifetime versus foil temperature

Future developments: rGO stripper foil sensitive to high temperature

* Feedback signal to stop the ion beam at high stripper temperature

Conclusions

- GO foils have higher mechanical resistance than graphite
- rGO foils have high electrical and thermal conductivity, low density and high mechanical resistance
- GO foils become rGO under ion beam irradiation starting from about 10¹³ ions/cm² fluence
- GO foils with sub-micrometric thickness can be used as ion stripper with high efficiency, similarly to Graphite foils
- The stripper lifetime of rGO foils is higher with respect to graphite foils
- Further investigation must be performed using high energy ions (~100 MeV), heavy ions (Z>8) and high ion current (I>100 nA) to evaluate the rGO stripper lifetime response with respect to graphite.

Thank You for the Attention

CHERNE 2019

CHERNE 2019 -15th Workshop on European Collaboration in Higher Education on Radiological and Nuclear Engineering and Radiation Protection

2-5 June 2019 Portopalo di Capo Passero

Graphene

Functional groups: - hydroxyl (C-OH)

- 10 10 10
- epoxy (C-O-C)
- carbonyl (C=O)
- carboxyl (O-C=O)

XPS Anal ysis

> L. Torrisi et Al., *Vacuum* 153 (2018) 122-131.

Ion beam reduction and Patternig in insulator GO

The charge state distribution for (160)⁻¹ ions with 3.0 MV at the HV Terminal was:

 $O^+ = 0.5\%$ $O^{2+} = 0.8\%$ $O^{3+} = 1\%$ $O^{4+} = 10\%$ $O^{5+} = 41\%$ $O^{6+} = 36\%$ $O^{7+} = 10\%$ $O^{8+} = 1\%$

Principle of Stripper

- Carbon foils to extract positive protons by stripping two electrons from accelerated negative protons.
- Therefore a good quality of carbon foil is necessary to extract proton beam stable for a long time.
- The lifetime of stripping foils is limited by several factorsextracting currents, the foil thickness, the repetition rate

Ionization potentials of the projectile atoms C atoms

C - ATOMS

At. Num.	Sp. Name.	lon Charge	El. name	lsoel. Seq.	Ground Shells	Ground Level	lonized Level	lonization Energy (eV)	Uncertainty (eV)	References
6	CI	0	Carbon	С	1s ² 2s ² 2p ²	³ P ₀	2s²2p ²P° _{1/2}	11.2602880	0.0000011	L20057
6	CII	+1	Carbon	В	1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i>	² P° _{1/2}	2s ² ¹ S ₀	24.383154	0.000016	c190
6	CIII	+2	Carbon	Ве	1 <i>s</i> ² 2 <i>s</i> ²	¹ S ₀	2s ² S _{1/2}	47.88778	0.00025	L876c191
6	CIV	+3	Carbon	Li	1 <i>s</i> ² 2 <i>s</i>	² S _{1/2}	1 <i>s</i> ² ¹ S ₀	64.49352	0.00019	L11667
6	CV	+4	Carbon	Не	1 <i>s</i> ²	¹ S ₀	1s ² S _{1/2}	[392.090515]	0.000025	L10054
6	C VI	+5	Carbon	Н	15	² S _{1/2}		(489.993194)	0.000007	L7188

O - ATOMS

At. Num.	Sp. Name.	lon Charge	El. name	Isoel. Seq.	Ground Shells	Ground Level	lonized Level	lonization Energy (eV)	Uncertainty (eV)	References
8	01	0	Oxygen	0	1s ² 2s ² 2p ⁴	³ P ₂	2p ^{3 4} S° _{3/2}	13.618055	0.000007	L74,L3760
8	01	+1	Oxygen	Ν	1s ² 2s ² 2p ³	⁴ S° _{3/2}	2p ^{2 3} P ₀	35.12112	0.00006	L11267,L10621
8	0	+2	Oxygen	С	1s ² 2s ² 2p ²	³ P ₀	2p ² P° _{1/2}	[54.93554]	0.00012	L11770
8	O IV	+3	Oxygen	В	1s²2s²2p	² P° _{1/2}	2s ^{2 1} S ₀	77.41350	0.00025	L648
8	ov	+4	Oxygen	Ве	1 <i>s</i> ² 2 <i>s</i> ²	¹ S ₀	28 2S1/2	113.8990	0.0005	L7288
8	O VI	+5	Oxygen	Li	1 <i>s</i> ²2 <i>s</i>	² S _{1/2}	1s ^{2 1} S ₀	[138.1189]	0.0021	L4713
8	O VII	+6	Oxygen	Не	1 <i>s</i> ²	¹ S ₀	1s ² S _{1/2}	[739.32682]	0.00006	L10054
8	O VIII	+7	Oxygen	Н	1s	² S _{1/2}		(871.40988)	0.00003	L7188

Graphene-based materials: Properties (rGO)

- Electrical
 - Semiconductor with both holes and electrons as charge carriers
 - Very high electrical conductivity (depending on the quality of graphene oxide)

Mechanical

Young's modulus ~ 260 GPa

Optical

Transmittance ~ 85% (IR); ~ 5% (Visible);

Metallic color

Thermal

- Conductivity Above 600 W/(m K) (in plane)
- High Specific Surface Area
 - Theoretically ~ 500 m².g⁻¹
- Low density GO: ~ 1.8 g/cm³

