





# Simulations of Triple-GEM tracker's response for experiments at JLab

Vanessa Brio



## **Table of Contents**

Jefferson Laboratory physics





Gas Electron Multiplier Detector

ANSYS and Garfield++

Simulations and results

**Conclusions** 



## **Jefferson Lab**

The main purpose is to investigate the fundamental nature of nuclear matter





## Nucleon Form Factors

# 4 different experimental rooms

CHERNE19

June 2-5 2019

# **CEBAF** Continuous Electron Beam Accelerator Facility



**Longitudinal Polarization : ~ 85%** 

# **SBS** Super Bigbite Spectrometer



5



Charged particles pass through the gas, lose their energy and create ion-electron pairs. If we apply an appropriate electric field, we can accelerate these charges towards the electrodes and collect them.



Wionization  $\approx$  30-35 eV/pairs

 $\Delta V \implies$  Electric field  $\implies$  Energy for more ionizations



**Creation of avalanche** 





### **Biconical holes**

D<sub>ext</sub>= 70 μm d<sub>int</sub> = 50 μm





# Single GEM foil

Gas mixture : Ar 70% CO₂ 30% → GEM foil Readout plane

#### $\Delta V$ = 300-500 Volts



Strong electric field in each hole



#### Advantages:

 $\clubsuit$  Conversion, amplification and charge

collection take place in separate layers;

- $\clubsuit$  Good gain in the final state;
- Flexible geometry;

 $\clubsuit$  Good spatial resolution;

A GEM foil is not expensive!

**Readout Plane** 

# Gain in a single GEM

**Relative Gain** 

 $G = \frac{n}{n_0} = e^{\alpha x} \approx 10^3$  a  $\longrightarrow$  Towsend Coefficient = ionization number to length unit

## But not all electrons can reach the readout plane !!!

### **Real Gain** depends from:

 $\clubsuit$  Electric field intensity;

 $\clubsuit$  Thickness of the drift region and the induction region;

 $\clubsuit$  Ratio between the number of electrons entering the GEM holes and the number of electrons produced in the drift area;

 $\clubsuit$  Ratio between the number of electrons extracted from the holes and the

number of electrons produced inside the holes.

# **Triple GEM detector**

**3 GEM foil in cascade between the drift and the readout** 

planes



### Gain:

### **Advantages:**



 $\clubsuit$  Better gain but using smaller potential

differences;

Effective Gain ~  $10^5$   $\clubsuit$  Probability of lower discharge phenomena;

 $\clubsuit$  Lower number of ions at the cathode.



# **Readout plane**

Kapton sheet with copper on one side; the geometry for the readout plane can take two different configurations:

## Pad

Double strip with 45° angle



Double strip with 90° angle





The readout plane, for SBS configuration is a Strip plane and allows us reach a good spatial resolution in x and y directions



# **SBS** for GEp5 Experiment

Study of the electric Form Factor of the proton





# **ANSYS** software

ANSYS is an engineering software useful to create complex geometries, assign materials to different volumes and create electrostatic field solutions.

## Mechanical APDL (ANSYS Parametric Design Language)

| Alth dame beckers beck |                                                                                                                                             |                                                      |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| lie Select List Plot Plot_tris WorkPlane Parameters Marro MeguCtris Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANSYS Academic Teaching Introductory Utility Menu                                                                                           | - 0                                                  |  |  |  |  |  |  |
| Image:                                | ile <u>S</u> elect List <u>P</u> lot Plot <u>C</u> trls <u>W</u> orkPlane Pa <u>r</u> ameters <u>M</u> acro Me <u>n</u> uCtrls <u>H</u> elp |                                                      |  |  |  |  |  |  |
| colbar    AXE_DB    QUIT    POWRGRPH      tain Menu    ©    Image: Color of the second secon                                                                                                                         | ) 🖆 🖬 🗇 🚳 🕼 📍 🗐                                                                                                                             |                                                      |  |  |  |  |  |  |
| SAVE_DB RESUM_DB QUIT POWRGRPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | foolbar                                                                                                                                     |                                                      |  |  |  |  |  |  |
| tain Menu (*)<br>Preferences<br>Preprocessor<br>Solution<br>General Postproc<br>TimeHist Postpro<br>Radiation Opt<br>Session Editor<br>Finish<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAVE_DB RESUM_DB QUIT POWRGRPH                                                                                                              |                                                      |  |  |  |  |  |  |
| Preferences<br>Solution<br>General Postproc<br>TimeHist Postpro<br>TimeHist Postpro<br>Roll Tool<br>Redition Opt<br>Session Editor<br>Finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Main Menu 🛞                                                                                                                                 |                                                      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preferences<br>Preprocessor<br>Solution<br>General Postproc<br>TimeHist Postpro<br>ROM Tool<br>Radiation Opt<br>Session Editor<br>Finish    | XIS2<br>R19.2<br>Icademic<br>MAY 28 2019<br>12:25:34 |  |  |  |  |  |  |

 $\clubsuit$  Preprocessor (Geometry, material and mesh)

- $\cancel{P}$  Solution (Potential and field)
  - General Post-processor (look the data and save the files)

# ANSYS software-preprocessor Geometry Mesh



! Voltage boundaries on the drift and induction plane ASEL, S, LOC, Z, drift DA, ALL, VOLT, -1857 ASEL, S, LOC, Z, induct DA, ALL, VOLT, 0

## Potential

! Voltage boundary conditions on the lower metal VSEL, S, , , 1 ASLV, S DA, ALL, VOLT, -729

! Voltage boundary conditions on the upper metal VSEL, S, , , 2 ASLV, S DA, ALL, VOLT, -1128

# ANSYS software - solution and postprocessor





# **Garfield++ tool**

Garfield++ is the best tool to simulate the behavior of gaseous detectors.



We also use the **MAGBOLTZ** library to define the atomic and thermodynamic characteristic of the gas (mixture percent, temperature and pressure)

For the simulation we are using:

Gas mixture **70% Argon** and **30% CO**<sub>2;</sub> Temperature = 293.15K; Pressure= 760Torr

# Garfield++ tool

#### What we can change using Garfield ++:

- The physic volume of the simulation;
- Number of the particles that we want simulate in input and primary particle type (e-, p,  $\pi$ , etc. );
- Energy (eV), direction and impact point (angle) of the primary particles.

## We can visualize the results of the simulation using **ROOT** libraries:







#### **Electric Field map**

CHERNE19

17

June 2-5 2019



# **Simulations models**

## Cascade Triple-GEM Model

3 GEM single foil in cascade and an ideal readout plane.

Microscopic simulations are carried on each layer in a hierarchical way: simulation outcome of the previous layer is sent to the next layer.

It's a flexible multistep model that easily allows to simulate different schemes, imperfections, foil misalignment, by decomposing the 3xGEM+Readout chamber in 4 adjacent layers.

## Full 3GEM Model

It is a complete model with drift, readout and 3 GEM foil.

Microscopic simulations are carried from the drift plane, trough the 3 gem foils, to the ideal readout plane.

We can evaluate the simulations results only in the readout plane. It's a model useful to show that the cascade model is correctly working.



# **Simulations Conditions**

Two different "work environments":





## JLAB Experimental Conditions

4 GeV electron beam.

Simulations when some physical parameters change.

Simulations carried on with both the model: cascade and full.

GEMs size:

40 [cm]x 50[cm]

Julich Experimental Conditions

2.8 GeV proton beam.

Simulations to compare the results with the real data.

The simulations are in progress.

We tested 1 reference module 10 [cm]x 10[cm]

> and 5 GEMs foil 40 [cm]x 50[cm]

CHERNE19



25000

20000

15000

10000

5000

0 L -0.1

CHERNE19

-0.05

0

# Simulations in JLAB conditions

Systematic study to verify the consistency of the simulations:

Number of electrons in the readout plane

Spatial distribution of the avalanche (x and y axes)

Energy of the particles in the readout plane

Particles arrival time.







Portopalo di Capo Passero, June 2-5 2019



We evaluated the response, in terms of avalanche distribution in the readout plane, when the impact point of the primary particles changes.



X (red) and y (blue) distributions of the charge in the readout plane, when the incident particles **pass through the center of the hole** and perpendicular to the readout plane.

X (red) and y (blue) distributions of the charge in the readout plane, when the particles incise in x= 0.0035 cm and perpendicular to the readout plane.

X (red) and y (blue) distributions of the charge in the readout plane, when the particles incise in x= 0.0070 cm and perpendicular to the readout plane.



# Simulations in JLAB conditions

Avalanche width VS impact point of primary particles.





Avalanche width VS impact angle of primary particles.



CHERNE19

Portopalo di Capo Passero,



# Simulations in JLAB conditions

Comparing the cascade 3GEM model and the full 3GEM model results we can observe that:

- Stable and comparable results for the electric field;
- Good agreement when we change the mesh size or potential values;
- Small but unexpected suppression in gain and efficiency in the full 3GEM model;

# Reasonable predictions from cascade model!!!!!

# Simulations in Julich conditions

|             | $R_1[\Omega]$ | R <sub>2</sub> [Ω] | R₃[Ω]  | R <sub>4</sub> [Ω] | $R_5[\Omega]$ | $R_6[\Omega]$ | R <sub>7</sub> [Ω] | R <sub>8</sub> [Ω] |
|-------------|---------------|--------------------|--------|--------------------|---------------|---------------|--------------------|--------------------|
| Modulo 0    | 441 K         | 7.2 M              | 3.76 M | 7.2 M              | 3.63 M        | 7.2 M         | 2.98 M             | 7.2 M              |
| Modulo 1    | 441 K         | 7.2 M              | 3.92 M | 7.2 M              | 3.57 M        | 7.2 M         | 3.57 M             | 7.2 M              |
| Modulo 2    | 441 K         | 7.2 M              | 3.92 M | 7.2 M              | 3.92 M        | 7.2 M         | 3.92 M             | 7.2 M              |
| Modulo 3    | 441 K         | 7.2 M              | 3.76 M | 7.2 M              | 3.66 M        | 7.2 M         | 2.98 M             | 7.2 M              |
| Modulo rif. | 441 K         | 4.8 M              | 2.66 M | 4.8 M              | 2.66 M        | 4.8 M         | 2.27 M             | 4.8 M              |

We tested 4 modules and 1 reference module with known gain:

![](_page_24_Figure_3.jpeg)

25

![](_page_25_Picture_0.jpeg)

26

# **Simulations in Julich** conditions

## The relative gain of module 2 is :

![](_page_25_Figure_3.jpeg)

# Conclusions

- Construction of two different model using ANSYS software and GARFIELD++ tool.
- Study about the charge distribution in the readout plane, avalanche width, electric field value, gain etc.
- Confirmation that the gain and the avalanche width not depend on the impact point of the primary particle but depend on the incidence angle.
- Comparison between cascade and full models and proof that the two model give us the same results.
- Simulations in Julich condition to compare the simulations data and the real data from Julich test.
- Confirmation that the gain obtained with the simulations is in agreement with the real data.

# What's next?

- Finish the simulations to compare all the modules tested in Julich
- Create a real readout strip
  geometry
- Use free program softwares,
  GMSH and Elmer, and compare the gain results with ANSYS results

![](_page_28_Picture_0.jpeg)

# **Backup Slides**

CHERNE19

![](_page_30_Picture_0.jpeg)

## **Sachs Form Factors**

The electromagnetic structure of the nucleus, in the diffusion with an electron can be described through the Sachs Form Factors:

![](_page_30_Figure_3.jpeg)

The Form Factors of the nucleons can be considered as the Fourier transform in 3D of charge distribution and magnetic density

## **Rosenbluth Formula**

![](_page_30_Figure_6.jpeg)

# **Recoil Polarization Method**

![](_page_31_Figure_1.jpeg)

 $\Theta_{\rm e}\textsc{-}$  electron diffusion angle

#### CHERNE19

# e-- nucleon interaction

In the elastic scattering between an electron and a nucleon, there is the exchange of a virtual photon

![](_page_32_Figure_2.jpeg)

The cross - section of this process was given by Rosenbluth and it is a good method up to  $Q^{2<}\ 6\ GeV^2$ 

# SBS main components: 48D48 Dipole Magnet

The Super Bigbite magnet is optimized for Form Factor measurements

![](_page_33_Picture_2.jpeg)

- It provides adequate momentum resolution (~1%) and large solid angle (~70 msr) acceptance.
- Vertical aperture well matched to electron arm while still appropriate for  $\Delta Q^2/Q^2 \sim 0.1$ .
- Cut in yoke permits operating at small angles where the recoil is going.

The magnet weighs 100 tons total and consists of five iron slabs

Integral field strength  $\approx$  1.7 - 3 T  $\cdot$  m

# **SBS** main components: HCAL-J

It's a sampling calorimeter with a modular structure

![](_page_34_Picture_2.jpeg)

#### INFN of Catania and CMU

![](_page_34_Figure_4.jpeg)

288 modules (each 15x15 cm²) in a matrix of 24 modules in length and 12 in width Weight ~ 40 tons

> Iron thickness: 1.5 cm Scintillator material PPO-only (2,5– Diphenyloxazole) thickness: 1.0 cm

WLS placed at the center of the each module, carries on the light on the PMTs

4 "crane-able" subassemblies and a **Rollable** stand to move gantry + HCAL-J together without need to disconnect cables.

#### **HCAL-J Requirements:**

- -Linear energy response and good energy resolution,
- -95% efficiency with trigger threshold at 25% peak signal,
- Spatial resolution ~ 5 cm rms,
- Time resolution < 1.0 ns rms,
- Angular resolution 5 mrad.

# SBS main components: First and Back GEMs Trackers

|                      | FIRST TRACKER                         | BACK TRACKER                                       |  |  |
|----------------------|---------------------------------------|----------------------------------------------------|--|--|
| STRUCTURE            | 6 GEM chambers                        | 10 GEM chambers                                    |  |  |
| TOTAL AREA           | 40 x150 cm²<br>(3 triple-GEM modules) | 60 x 200 cm <sup>2</sup><br>(4 triple-GEM modules) |  |  |
| AREA of each tracker | 40 x 50 cm <sup>2</sup>               | 60 x 50 cm²                                        |  |  |

![](_page_35_Picture_2.jpeg)

# **GMn** experiment

![](_page_36_Figure_1.jpeg)

#### **Ratio Method for GMn**

Use the ratio method requires the measurement of both neutron-tagged, d(e,e'n), and proton-tagged, d(e,e'p), quasi-elastic scattering from the deuteron.

$$R'' = \frac{\frac{d\sigma}{d\Omega}(D(e, e'n))}{\frac{d\sigma}{d\Omega}(D(e, e'p))} R = \frac{\eta\sigma_{Mott}\left(\frac{\tau/\epsilon}{1+\tau}G_M^n\right)}{\frac{d\sigma}{d\Omega}|_{p(e,e')}}$$

Knowing the form factors of the proton we can extract the neutron magnetic form factor from the previously ratio

![](_page_36_Figure_6.jpeg)

Study of the magnetic Form Factor of the neutron

Beam current: 10.5 µA

Target: 10 cm non-polarized liquid deuterium

 $Q^2$  range: 4.5 <  $Q^2$  < 18.0 (GeV/c)<sup>2</sup>

## **Electronics**

GEMs system use the flexible electronics developed by INFN around the APV25 chip, compliant with the VME-VXS JLab standard and able to transmit data over optical link.

![](_page_37_Picture_2.jpeg)

Le carte di front-end utilizzate sono 18 per modulo e sono distribuite lungo i quattro lati del frame. Ogni carta di front-end (FEC) contiene un chip APV25 (Analogue Pipeline Voltage), sviluppato da Imperial College London e tale chip APV25 è un pipeline ASIC (Application Specific Integral Circuit) analogico con un output seriale. Esso è stato progettato per tollerare alte quantità di radiazioni incidenti.

38

il coefficiente di diffusione in argon  $D = 200 - 300 \text{cm}_2/\text{s}$ 

velocità di deriva tipica degli elettroni secondari ~5-6 cm/ μs

un percorso di circa 0.9 cm, i tempi massimi di traversata dell'intera GEM sono di circa t ~ 150ns, mentre la distribuzione spaziale della valanga si allarga di almeno  $\sqrt{2} * D * t ~ 90\mu m$ 

![](_page_38_Figure_3.jpeg)