

Formé pour innover Use of (coupled) Monte Carlo (and electronic simulation) code to evaluate the robustness of electronic components

I Gerardy, A. Almeida Albuquerque, V. De Heyn, J. Derrien

15th CHERNE Workshop

3-5 of June 2019- Portopalo (Italy)

HEZB

ISIB

des titres d'ingénieur

Introduction

Cosmic radiations and electronic components Methodology of the simulation Results Comments about the results

Future works

Introduction

HE²B

- Electronic devices used in all daily life aspects even in place with high level of radiation (reactor, accelerator devices, deep space...)
- Interaction with ionising radiations produced free electrons
- Electrons may induced unwanted current
 - Might create extra current and disturb information transfer...
- Electron behaviour (recombination) depends on the presence of electric field within the component

Cosmic radiations and electronic components

- Electronic components are used in space industry
- Robustness have to be evaluate regarding ESA normalisation documents:

HE²B

- ESCC Basic Specification No. 22900:TOTAL DOSE STEADY-STATE IRRADIATION TEST METHOD
- E
- ESCC Basic Specification No. 25100:SINGLE EVENT EFFECTS TEST METHOD AND GUIDELINES
- But experimental tests require long irradiation with γ and protons at different energies
 - Expensive → interest to use simulation codes to evaluate possible damage and predict behaviour

- Geant 4 toolkit used to evaluate the number of secondary electron produced
 - Micro-electronic physics list for protons and heavy ions
 - Protons, ²⁷Ne, ⁵³Cr, ¹²⁴Xe of 20, 50, 100, 150, 200 MeV
 - QBBC modular list for γ of ⁶⁰Co
 - Evaluation of the number of electron created in the depleted region related to
 - Type and energy of incident particles
 - Beam incidence on the target
 - Number of incident particles adapted to obtain a good statistic

Methodology of the simulation (2)

- **ISIB** Two types of MOSFET component
 - Solid On Insulator (SOI) technology
 - bulk technology

HE²B

- Only SOI results presented here
- Advantage of SOI
 - Less sensitive to electronical perturbations

HE²I

Methodology of the simulation (3)

- Statistical tests have to be written in Geant 4 code
- 8 parameters implemented
 - The mean
 - The value of standard deviation R
 - The behaviour of R
 - The stability of R
 - The variance of the variance
 - The stability of the variance of the variance
 - The behaviour of the figure of merit
 - The slope of the figure of merit

Result 1: statistical study

• 2000 simulations

HE

- Incident proton beam of 20 MeV
- 50 million of particles
- Classes of 17.038,62
 electrons
 - Mean :192353142,3
 - Std: 34493,4
 - Relative Std: 0,02%

Result 2: accumulation of electrons

• For ⁶⁰Co

HE²B

ISIB

• In SOI type (NMOS and PMOS)

Type of transistor	Recombination without Electric field
NMOS	0.22%
PMOS	0.11%

Result 3: influence of type of particle

- For 10 million of incident particles
 - For protons and heavy ions
 - Parallel beam
 - Entrance face= top of the transistor
 - For ⁶⁰Co

ISIB

- Parallel beam
- 2664 electrons in the depleted region

number of electron per nucleon in the depleted region (ions)

HE²B

Result 4: influence of the energy and beam incidence

- Number of incident particles adapted to fulfil the statistical tests
- Results presented for 10 millions of particles
- Protons
- Two beam incidences
 - 0°(blue) and 90°(orange)
 - Related to top of transistor

Result 5: dose evaluation

 Following ESA recommendations

- Evaluation of the dose
 - In all diffusion zones
 - For 10 millions incident particles
 - For 2 incidences
 - 0°: particles go across all the diffusion zones of the transistor

Some comments about the results

- Model created and can be "connect" together
 - Low number of recombination of electrons without electrical fields → possible accumulation in absence of electric field: latch-up?
 - Chromium of 100 MeV seems to be the most efficient in electron production in our simulations
 - For protons

- 20 MeV is the most efficient energy
- 0° incident create more electron in depleted zone
- Dose can be evaluated and compare to the requirement of ESA

Future works

Implement electric fields in the Geant 4 model

- Evaluate the influence on the electron behaviour
- Coupling output of Geant4 and TCAD

- Supplementary electrons= source for TCAD electronic simulation code
- Simulation of larger system (more than one transistor)
- Influence of the thickness of the different structures on the electron production

• Thanks to

HF2B

- The Walloon region who support this research by the FIRST HE program
- nSilition who provide (confidential) information about the construction of their SOI mosfet