

^aLorenzo Isolan, ^{a,b}Marco Sumini, ^aGiorgio Cucchi,^cMauro Iori,^cRoberto Sghedoni; ^aIndustrial Engineering Department, University of Bologna, Italy ^bINFN, Italy ^cIRCCS - ASMN of Reggio Emilia, Italy

MONTE CARLO BENCHMARK OF THE EXPERIMENTAL EVALUATION OF THE ACTIVATION PROCESSES IN AN ELECTRON LINEAR ACCELERATOR FOR RADIOTHERAPY APPLICATIONS

CHERNE Conference 2016 CERVIA - 30 Maggio 2016

The Activation Problem

The source: a 15 MeV electron beam source by a VARIAN TRUE-BEAM like device and 600 MU with various jaws opening and irradiation times (orders of 10 min each).

The goal: Properly evaluate the effects of the interaction of the primary beam with the accelerator and the bunker structural materials to estimate the dose that medics and paramedics staff must bear while assisting the patients.

The critical issue: dose for the operators at the end of the patient irradiation session.

The tool: We investigate the activation products and their distribution using both Monte Carlo simulations using the MCNPX/6 codes, to identify the source components, and a detector LaBr3 InSpector[™] 1000 Digital Hand-Held Multichannel Analyzer by Canberra.

MCNP models were calibrated and able to predict the amount of produced material and where they are generated and obviously doesn't take into account impurities and imperfections (and unexpected players...).

The MCNP simulation results have been scored thanks to the Residual tally Card.

Some significant portions of the MCNPX simulation input and tallies:

PHYS:p 1500-11jj

PHYS:e 150000111100.917

PHYS:n 1500-1-15

ACT fission=all nonfiss=all dn=prompt dg=lines thresh=0.95 nap=10

LCA ielas=2 ipreq=1 iexisa=2 ichoic=0023 jcoul=1 nexite=1 npidk=0 noact=-2 icem=0 il

ilaq=0

F8:n 12345678910111213100

FT8 RES [1 99] \$ Heavy-Ion and residual isotopes

The interaction of high-energy particles with target nuclei causes the production of several residual nuclei. The generated nuclei can be recorded by an F8 tally if used with an FT8 RES special treatment option. The residuals are recorded at each PHYSICS MODEL interaction and at each NEUTRON – NUCLEI interaction as recorded in the library as well.

An MCNP x-y view of the bunker hosting the accelerator (the real one)

ALMA MATER STUDIORUM * UNIVERSITÀ DI BOLOGNA

Geometry of the VARIAN True Beam – like accelerator head

2D X-Y Visualization of the photon flux with primary beam pointed on the bunker wall

2D X-Z Visualization of the photon flux with primary beam pointed on a water phantom in the floor direction

ALMA MATER STUDIORUM 7 UNIVERSITÀ DI BOLOGNA

ALMA MATER STUDIORUM * UNIVERSITÀ DI BOLOGNA

Activation results and Monte Carlo Estimations

ACCELERATOR HEAD					
MATERIAL	COMPONENT	% OF GENERATED PRODUCTS (MCNP)			
W	Primary collimator	71.822			
	Target	0.177			
	Y1 jaw	7.58			
	Y2 jaw	7.59			
	X1 jaw	3.79			
	X2 jaw	3.75			
Cu	Target	2.45			
	Flattening Filter	2.20			
Be	Berillium Vacuum Chamber	0.02			
Capton	Capton Disks	0.51			
Lead	Lead Cake	0.08			

The % amount of produced materials, referred to the accelerator head.

ALMA MATER STUDIORUM * UNIVERSITÀ DI BOLOGNA

¹⁸⁷ W	Total # of	atoms produced in the head	% Radioisotopes
6.05 e -6		2.94 0 -5	35
-	MATERIAL	NORMALIZED FRACTION (ON ¹⁸⁷ W)
-	Cu	0.30136	
	Be	4.7 e- 4	
	Capton	0.2	
	Lead	0.111	
	Total head	4.86	

The normalization is done on the global number on atoms of W187 produced, shown in table. This quantity represents the total number (normalized) of atoms of all materials, radioactive and not, produced by the nuclear reactions.

ISOTOPE	T _{1/2}	$\gamma \ \text{Energy}$	Intensity	Main Reactions	Position
¹⁸⁷ W	23.7 h	479.531	21.8	$^{186}W(n,\gamma)^{187}W$	1
		551.532	5.08		
		618.361	6.28 14		
		685.774	27.3		
		772.89	4.12		
⁶⁶ Cu	5.1 min	1039.23	9	⁶⁵ Cu(n,γ) ⁶⁶ Cu	1-2
¹²⁴ Sb	60.2 d	1691	0.47	63 Cu(n, γ) 64 Cu	1
⁵⁹ Fe	44.503 d	1291.59	43.2	58 Fe(n, γ) 59 Fe	1
²⁴ Na	2.31 min	1396	100	23 Na(n, γ) 24 Na	1
²² Na	2.60 y	1274.53	99.9	$^{19}F(\alpha,n)^{22}Na$	1
				$^{24}Mg(d,\alpha)^{22}Na$	
⁵⁶ Mn	2.58 h	846.77	99	$^{55}Mn(n,\gamma)^{56}Mn$	1
⁴⁰ K	1.277E+9 y	1460	11	Naturally occurring	2

Pos. 1: accel head Pos. 2: bunker wall

Summary of Varian Truebeam-like device referred to the accelerator head. Position 2 is referred to the bunker structure.

Thanks to the experimental setup we were able to find the activity of some radioisotopes and thanks to Monte Carlo code we were able to identify the peaks and even the isotopes invisibles to our instruments but presents in the processes.

The 187W activity were calculated as 0.612 MBq, in the explained measurement condition and 1.57 MBq estimated with MCNP.

MC code suggests to look for other isotopes of interest over the measurement range or invisible to our instruments that will be validated in a future work. It is worth to cite the 28-Al with T 1/2 2.31 min and 1780 keV of energy peak, Intensity equal to 100% produced by 27Al(n,γ)28Al. Also Barium isotopes inside the bunker structure have been found in the simulation.

OTHERS MC ESTIMATED ISOTOPES	T _{1/2}	¹⁸⁷ W NORM	γ Energy	Intensity	Reaction
⁶⁴ Cu	12.8 h	0.158	1345.84	0.473	⁶³ Cu(n,γ) ⁶⁴ Cu
^{207m} Pb	0.8 sec	0.002	569.702	97.87	²⁰⁷ (n,n') ^{207m} Pb
			1063.662	88.5	208 Pb(γ ,n) 207m Pb
					208 Pb(γ ,n) 207m Pb
²⁸ AI	2.31 min	0.673	1780	100	²⁷ Al(n,γ) ²⁸ Al
³⁷ S in bunker structure	5.07 min	3.5E-4	3103	94	³⁶ S(n,γ) ³⁷ S
⁴⁹ Ca in bunker structure	8.8 min	0.015	3084	92	⁴⁸ Ca(n,γ) ⁴⁹ Ca

407

The results show a possible general approach to perform spectrometry analysis coupling the experimental measurements with the results of a Monte Carlo estimate to properly identify the peaks, the source components and the materials not directly detectable by the instrumentation.

Our data confirm how it is important that the staff who work with the patients, before getting them from the treatment bed, be able to move away the accelerator head, in front of a measured dose rate equal to 70 μ Sv/h at contact and 30 μ Sv/h at 1 meter, fully coherent also with the validating MC simulation outcome.

REFERENCES

- 1. D.B. Pelowitz, Ed., "MCNPX Users Manual Version 2.7.0" LA-CP-11-00438 (2011).
- 2. T. Goorley, "MCNP6.1.1-Beta Release Notes", LA-UR-14-24680(2014).
- 3. Rohan Ram, Ian Steadman, UOIT, Determination of Activation Products and Resulting Dose Rates for the Varian Truebeam.
- 4. Pawel Jodlowski, NUKLEONIKA 2006;51(Supplement 2):S21S25, Selfabsorption correction in gamma-ray spectrometry of environmental samples; an overview of methods and correction values obtained for the selected geometries

ALMA MATER STUDIORUM * UNIVERSITÀ DI BOLOGNA.

RPA: Radiation Pressure dominated Acceleration

THANK YOU

ALMA MATER STUDIORUM * UNIVERSITÀ DI BOLOGNA